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Abstract. Site occupancy models have been developed that allow for imperfect species
detection or ‘‘false negative’’ observations. Such models have become widely adopted in
surveys of many taxa. The most fundamental assumption underlying these models is that
‘‘false positive’’ errors are not possible. That is, one cannot detect a species where it does not
occur. However, such errors are possible in many sampling situations for a number of reasons,
and even low false positive error rates can induce extreme bias in estimates of site occupancy
when they are not accounted for. In this paper, we develop a model for site occupancy that
allows for both false negative and false positive error rates. This model can be represented as a
two-component finite mixture model and can be easily fitted using freely available software.
We provide an analysis of avian survey data using the proposed model and present results of a
brief simulation study evaluating the performance of the maximum-likelihood estimator and
the naive estimator in the presence of false positive errors.
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INTRODUCTION

The problem of estimating occurrence probability,

proportion of area occupied (PAO), or ‘‘site occu-

pancy,’’ of a species subject to imperfect detection is a

problem of some interest in many animal sampling

problems (Bayley and Peterson 2001, MacKenzie et al.

2002, Nichols and Karanth 2002). As incremental

methodological extensions have been developed (e.g.,

Royle and Nichols 2003, MacKenzie et al. 2003, 2005,

Tyre et al. 2003, Gu and Swihart 2004, MacKenzie and

Bailey 2004, Royle 2004a, b), the site occupancy frame-

work is becoming widely adopted in survey and

monitoring activities in many settings. For example,

the Amphibian Research and Monitoring Initiative

(ARMI; Hall and Langtimm 2001) has identified site

occupancy as the primary focus of current efforts as

indicated by the following statement from the ARMI

web page (available online):2

The most promising national variable to date is one

based on species presence. Documenting shifts in

species presence through time will provide important

data for assessing changes in amphibian status. The

‘‘proportion of area occupied’’ (PAO) by an

amphibian species has been identified by ARMI as

the only metric that so far meets the Program

criteria for being nationally interpretable and

regionally adaptable.

(See also Swihart et al. [2003], Bailey et al. [2004], Weir

et al. [2005], Ball et al. [2005], and Stanley and Royle

[2005] for other applications, including to other taxa).

The rapid and widespread adoption of site occupancy as

a metric of animal population status is due, at least in

part, to the ease of establishing surveys based on

presence/absence data, that such models facilitate an

explicit accounting for detectability of the species in

question, and the extensibility of the site occupancy

modeling framework.

The framework laid out by MacKenzie et al. (2002)

and others addresses one fundamental concern in animal

sampling problems: the problem of false negatives in

survey data, or the failure to detect a species where in

fact the species is present. As an example, suppose a

sample unit (or ‘‘site’’) is sampled multiple times,

yielding a record of putative absence such as, for T ¼
3 visits, (0, 0, 0). There are two mutually exclusive

possibilities to explain this event. The first is that the

species is actually absent from the site, and thus the

survey result was accurate. The second is that the species

was in fact present at the site but went undetected (a
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‘‘false absence’’). This is fairly typical in surveys of

wildlife, where, of course, vast literature has developed

around the issue of modeling detectability wildlife

sampling (e.g., see Williams et al. 2002). The develop-

ment of a formal framework for modeling and inference

based on data subject to false negative errors was the

focus of the work by Bayley and Peterson (2001),

MacKenzie et al. (2002, 2003), Royle and Nichols

(2003), Tyre et al. (2003), and others. These approaches

have been predicated on the assertion that false positives

were impossible, i.e., that the species will not be detected

where it does not occur. While this assumption might

appear to be obviously true, the fact is that misidenti-

fication can occur in field settings. If false positives do

occur, it is absolutely critical that they be accommodated

in the model. Otherwise, under a simple binomial

sampling scheme, apparent occupancy will tend to 1.0

as the number of visits to sites increases. Indeed, even for

very low rates of false positive errors, the bias in apparent

occupancy rates, or those estimated under a model that

does not permit false positives, will be extreme (see

Simulation study). A second reason that we feel interest

should be paid to false positives is that many surveys, in

particular of birds and anurans, involve the simultaneous

sampling of large numbers of species by volunteer

observers with highly varying skill levels. This circum-

stance is ideal for the introduction of false positives by

misidentification of species. We thus suggest that false

positives are likely to be common in many survey

situations where they have previously been disregarded.

In this paper, we generalize the site occupancy model

described by MacKenzie et al. (2002) and others to the

situation where both false negative and false positive

observations are possible. In A model for misclassifica-

tion, we present the model for false positive errors,

noting that it can be represented as a finite mixture of

binomial random variables. We note that the framework

for modeling false positive errors is more general and

does extend to situations wherein there are more than

two possible states (e.g., Royle and Link 2005). This is

briefly discussed below in A model for misclassification:

K . 2 classes.

A MODEL FOR MISCLASSIFICATION

Suppose that i¼ 1, 2, . . . , R units (sites) are classified

according to some characteristic having K possible

values. Denote the true class of unit i as zi and the

observed class of unit i for time t as yit. Our focus here is

on the case K ¼ 2, although K . 2 can be handled

similarly. For K¼ 2, the possible classes are ‘‘occupied’’

(z¼ 1) or ‘‘not occupied’’ (z¼ 0). We suppose that yit,t¼
1, 2, . . . , T are independent and identically distributed,

in which case, the sufficient statistic is a function of the

site-specific totals yi ¼ Rt (yit). We will focus on

estimating the parameter w ¼ Pr(zi ¼ 1), which is the

site occupancy or proportion of area occupied (PAO)

parameter considered by MacKenzie et al. (2002), or

simply the probability of occurrence. As in MacKenzie

et al. (2002), we assume that occupancy statuses of sites

are independent, and that the system is closed in the

sense that occupancy status does not change during the

period of sampling. The extension to open systems is

straightforward (MacKenzie et al. 2003), and the

independence assumption is conceptually helpful, but

is not necessary in the sense that ŵ, the MLE of w, is
consistent even if occupancy statuses are not indepen-

dent (e.g., if samples are too close together in space).

Fundamental to the problem considered here is that

the observed class might not be equal to the true class

for each unit. Consequently, we define the set of

(mis)classification probabilities

pkl ¼ Prðyit ¼ kj zi ¼ lÞ

which sum to 1 for each value of zi. These classification

probabilities, arranged in tabular form for K ¼ 2, are

shown in Table 1, where each column constitutes the

sampling distribution of y conditional on a particular

state of z. Note that p00¼ 1� p10 and p01¼ 1� p11. This

model implies that, conditional on occupancy state (i.e.,

the value of zi), the site-specific counts yi have a binomial

distribution with a state-dependent detection probability

parameter. That is, for an occupied site, yi is binomial

with parameter p11, (‘‘detection probability’’) whereas,

for an unoccupied site, yi is binomial with parameter p10.

Thus, p10 is the probability of falsely detecting the

species at an unoccupied site, i.e., the false positive rate

parameter. Given data y ¼ yif gR
i¼1 a likelihood for p ¼

(p11, p10) and w can be written explicitly as

Lðp;w jyÞ}
YR

i¼1

pyi

11ð1� p11ÞT�yi

h i
w

n

þ pyi

10ð1� p10ÞT�yi

h i
ð1� wÞ

o
: ð1Þ

The occupancy model described by MacKenzie et al.

(2002) is a special case of the misclassification model,

that being the model that arises under the constraint

p10¼ 0.

The right-hand side of Eq. 1 can be maximized

numerically to obtain MLEs of the parameters p10, p11,

and w. Further, standard procedures for likelihood-

based inference can be applied to this model. For

example, estimated standard errors can be obtained

from the Fisher information matrix evaluated at the

MLEs (e.g., see Williams et al. 2002: appendix D). These

can be used to construct confidence intervals for

parameters of interest. Also, given a set of candidate

TABLE 1. Classification probabilities for site occupancy model
with two possible values (i.e., K ¼ 2).

z

yit 0 (unoccupied) 1 (occupied)

0 (not detected) p00 p01
1 (detected) p10 p11
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models, model selection can be carried out using

Akaike’s information criterion (AIC; e.g., see Burnham

and Anderson 1998).

Representation as a finite mixture

The explicit construction of the misclassification

model given by Eq. 1, in which the data are binomial

counts with state-specific detection probabilities, is

commonly referred to as a finite mixture or latent class

model. In the present case, the latent (i.e., not necessarily

observable) class is species presence or absence from a

site. Such models are common in many application areas

as a mechanism for accommodating overdispersion in

binomial counts. The finite mixture has been considered

in similar contexts by Norris and Pollock (1996) and

Royle (2005) (see also Link 2003). We note that the

present application is somewhat more conventional

because Eq. 1 is a regular binomial mixture with two

classes whereas in the Norris and Pollock (1996)

application, the index N is an unknown parameter

(population size) to be estimated.

The main implication of this representation as a finite

mixture is the existence of certain symmetries in the

likelihood and the multimodality that this induces. That

is, there is identical support for multiple, but distinct,

sets of parameter values. It can be seen by inspection of

Eq. 1 that L(p11, p10, w)¼ L(p10, p11, 1� w). Thus, for
example, a detection rate of 70% at occupied sites and

false detection rate of 40%, with 80% of sites occupied,

has the same likelihood as 40% detection rate at

occupied sites and 70% false detection rate, with 20%

of sites occupied. A solution to this problem is to restrict

the parameter space or, equivalently, to chose among

equally well-supported alternatives. One sensible so-

lution (to us) is to assert that p11 . p10, i.e., that p is

higher for occupied sites than the misclassification

probability is for unoccupied sites. Assuming that p11
. p10 allows one to interpret the group with the higher

binomial probability as the occupied group. This seems

the most sensible solution because there is no context to

group identification other than their values of p11 and

p10. That is, in the presence of misclassification, one does

not really know definitively whether any site is occupied.

The converse could also be asserted (p10 . p11) a priori,

but our point is that there is no information in the data

to associate meaning with the model parameters. Note

that the conventional site occupancy model avoids this

difficulty by asserting that p10 ¼ 0. Finally, this

likelihood symmetry implies also that, as p11 gets close

to p10, the MLE become unstable.

K . 2 classes

The model for misclassification described previously

can be extended to the situation where there are K . 0

possible states. For example, Royle (2004b) and Royle

and Link (2005) consider models for anuran calling

survey data. In these surveys, calling intensity of

breeding anurans is recorded into a multinomial index

taking on values 0 (no calling activity) to 3 (full chorus).

In both papers, the multistate equivalent of ‘‘false

positive’’ errors were ruled out a priori. Indeed, Royle

(2004b) asserted, incorrectly, that this restriction was

necessary in order to decompose variation due to

detectability from that due to population influences. In

fact, we can develop a misclassification model for this K

¼ 4 situation by mixing a multinomial sampling

distribution over potential states of the latent state

variable z 2 f0, 1, 2, 3g.
Specifically, let yt 2 f0, 1, 2, 3g be a categorical

observation of abundance class and suppose that Pr(yt¼
kjz) ¼ pk,z; k ¼ 0, 1, 2, 3 are the multinomial cell

probabilities with p3,z¼1� R2
k¼0 pk,z and z is the true but

unknown state with wk¼ Pr(z¼ k); k¼ 0, 1, 2, 3. Royle

and Link (2005) developed a modeling and inference

framework for this situation by imposing the constraint

that pk,z ¼ 0 for k . z. However, the unconstrained

model is identifiable provided that T is sufficiently large.

The main difficulty when K . 2 is that the multimodality

of the likelihood is considerably more complex. The

structure of the multinomial mixture mixed likelihood

for K . 2 is currently under investigation.

EXAMPLE

Here, we present a brief example using detection/

nondetection data on several species of passerines from

a North American BBS Route composed of 50 spatial

samples (‘‘stops’’), sampled 11 times during approx-

imately a one-month sample period. We consider data

on five species: Blue Jay, Common Yellowthroat, Song

Sparrow, Gray Catbird, and Ovenbird (BLJA, COYE,

SOSP, GRCA, and OVEN, respectively. Some of these

data were analyzed in other contexts, using other

models, by Royle and Nichols (2003) and also Royle

(2005).

For each species, we fit the unconstrained model

having likelihood given by Eq. 1 and the reduced model

with the constraint p10 ¼ 0, i.e., the model proposed by

MacKenzie et al. (2002). Parameter estimates, standard

errors for ŵ, and AIC for both models and for each

species are given in Table 2. The models were fit using

the free software package R (R Development Core

Team 2005); the data and programs are made available

in the Supplement to this paper.

For BLJA and GRCA, the misclassification model is

not favored (although for GRCA, the AIC is about the

same for both models). For the remaining species, the

misclassification model is strongly favored. For SOSP,

OVEN, and COYE there are large differences in

estimated occupancy between the two models. For

example, for COYE, estimated occupancy decreases

from 0.723 under the constrained model to 0.364 for the

misclassification model, and the estimated misclassifica-

tion rate is 0.101. For SOSP, the misclassification is only

0.019, yet the estimated occupancy changes from 0.521

(constrained model) to 0.411 for the misclassification

model. Apparently, very small rates of misclassification
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can have large effects on the apparent occupancy.

Moreover, estimated occupancy under the misclassifica-

tion model can be less than the apparent occupancy rate

(i.e., the number of occupied sites observed in the

sample).

SIMULATION STUDY

We conducted a small simulation study with two

objectives: (1) to illustrate the bias of the standard

occupancy estimator when misclassification is ignored

and (2) to evaluate bias and precision of estimates of

occupancy under the misclassification model. For

clarity, we focus on a concise set of design and

parameter settings for evaluation (the interested reader

may deploy the R code provided in the Supplement to

conduct additional simulations). For the design, we fix T

¼ 5 for all simulations and consider R ¼ 100, 200, 500

spatial replicates. We suppose three levels of detection

probability (0.4, 0.6, 0.8) and two levels of misclassifi-

cation probabilities (0.05, 0.10). This yields 18 design

levels for a fixed value of w. Selected results from the

simulation for w ¼ 0.6 are given in Table 3.

These results demonstrate that, even with relatively

small misclassification rates, there is extreme bias in the

conventional estimator of site occupancy. Second, ŵ is
approximately unbiased over the range of conditions

that summarized in Table 3. Third, in terms of precision,

ŵ appears reasonable even for R¼ 100 except in the case

p ¼ 0.40 (the lowest value of p considered).

DISCUSSION

Interest in site occupancy models that account for

imperfect detection has increased dramatically over the

last several years as useful extensions of these models

have been introduced. These models have been devel-

oped primarily to address the important animal

sampling problem of non-detection, or the existence of
false negative errors. That is, given that a species is

present at a site, it may go undetected. The most

important and fundamental assumption implicit in the

use of these methods is that false positive observations

TABLE 2. Parameter estimates and AIC under the proposed model allowing for false positive errors and the conventional model
(with constraint p10 ¼ 0) fitted to five species of avian presence/absence data.

Misclassification model Constrained model

Species n/R w SE p11 p10 AIC w SE p AIC

BLJA 0.66 0.694 0.159 0.204 0.007 170.04 0.723 0.077 0.199 168.08
COYE 0.72 0.364 0.080 0.587 0.101 225.63 0.723 0.064 0.385 254.55
SOSP 0.52 0.411 0.072 0.504 0.019 201.20 0.521 0.071 0.419 219.08
GRCA 0.38 0.307 0.087 0.264 0.012 136.23 0.407 0.075 0.219 136.11
OVEN 0.84 0.425 0.072 0.830 0.165 259.41 0.840 0.052 0.533 379.75

Notes: Species abbreviations are BLJA, Blue Jay; COYE, Common Yellowthroat; SOSP, Song Sparrow; GRCA, Gray Catbird;
and OVEN, Ovenbird. The n/R column reports the observed proportion of occupied sites in the sample, n¼RR

i¼1 I(yi . 0); and w is
the site occupancy parameter or proportion of area occupied.

TABLE 3. Summary of MLE of w under the model allowing for misclassification (mean and SD of the sampling distribution are
given) and under a model in which misclassification rate is assumed to be 0 (only the mean of the sampling distribution is given).

Simulation settings Misclassification model
Constrained model

ŵNo. sites T w p11 p10 ŵ SD

500 5 0.6 0.4 0.10 0.600 0.112 0.818
500 5 0.6 0.4 0.05 0.599 0.069 0.723
500 5 0.6 0.6 0.10 0.600 0.038 0.780
500 5 0.6 0.6 0.05 0.599 0.029 0.698
500 5 0.6 0.8 0.10 0.598 0.025 0.767
500 5 0.6 0.8 0.05 0.600 0.021 0.690
200 5 0.6 0.4 0.10 0.581 0.167 0.823
200 5 0.6 0.4 0.05 0.600 0.100 0.723
200 5 0.6 0.6 0.10 0.600 0.058 0.782
200 5 0.6 0.6 0.05 0.598 0.046 0.698
200 5 0.6 0.8 0.10 0.597 0.038 0.767
200 5 0.6 0.8 0.05 0.599 0.036 0.691
100 5 0.6 0.4 0.10 0.562 0.214 0.820
100 5 0.6 0.4 0.05 0.584 0.139 0.724
100 5 0.6 0.6 0.10 0.601 0.083 0.782
100 5 0.6 0.6 0.05 0.602 0.067 0.702
100 5 0.6 0.8 0.10 0.596 0.053 0.764
100 5 0.6 0.8 0.05 0.603 0.050 0.694

Notes: Results are based on 500 Monte Carlo samples for all cases. Variables are: T, the number of site visits; w, site occupancy
parameter or proportion of area occupied; p11, detection probability; p10, the probability of falsely detecting the species at an
unoccupied site, i.e., the false positive rate parameter; ŵ, the maximum likelihood estimator of w.
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(i.e., ‘‘false presence’’) are not possible. In this paper we

presented a straightforward extension of the basic site

occupancy model that allows for both false positives and

false negatives. The model developed here contains one

additional parameter, p10, the false positive detection

probability. When p10 ¼ 0, the model reduces to that

proposed by MacKenzie et al. (2002).

Several important generalizations of the model are, in

principle, straightforward. For example, the inclusion of

covariates that influence both w and p11 or p10, and the

extension to ‘‘open’’ systems pose no technical difficulty

following the basic likelihood framework laid out by

MacKenzie et al. (2002, 2003). The model for false

positives also generalizes to multinomial classification

data where K . 2, although we note that the

dimensionality of such models becomes unwieldy and

the data requirements are likely to be extreme. We have

neglected the development of these extensions here in

order to provide a clear and concise description of the

misclassification problem and a framework for modeling

false positive errors.

We believe that surveys of many taxa are prone to

false positives due to misidentification of species because

observers are required to collect data on many species

simultaneously, and often several sympatric species may

have similar visual or aural queues. For example, in

anuran surveys conducted in Maryland, two species of

grey treefrog occur (Hyla versicolor and Hyla chrys-

oscelis) that have similar vocalizations; the wood frog

(Rana sylvatica), southern leopard frog (Rana sphenoce-

phala), and northern leopard frog (Rana pipiens) have

similar calls, and Fowler’s toad (Bufo fowleri) and

eastern narrowmouth toad (Gastrophryne carolinensis)

can easily be confused. The problem of multispecies

surveys in which species might be easily confused is

exacerbated by having volunteer observers with highly

variable skill levels. These same arguments can be made

to support the plausibility of false positive errors in

many avian survey programs. Unfortunately, the

existence of even small rates of false positive errors

can lead to severe bias in the estimator of site occupancy

suggested by MacKenzie et al. (2002). Indeed, the

probability of falsely concluding that a site is occupied

in T samples, given a false positive rate p10, is 1 �
(1 � p10)

T which increases rapidly as a function of p10
(demonstrated empirically by simulation, Table 3), and

T. This was manifest in the results presented in Table 2,

for which, with T¼ 11, there are many opportunities to

observe a false positive.

A referee commented that our formulation of the

model for misclassification suggests that false positive

detections can only occur at sites where the species is not

present, yet it seems plausible that they can also occur

where the species is present. We did not explicitly

address the possibility that a correct classification

occurred by mistake because it does not affect the

statistical inference with regard to site occupancy. In this

case, the site is not misclassified. Indeed, under the

model allowing for false positives, p11 is not a ‘‘correct’’

detection rate parameter but rather a correct site

classification rate parameter. This phenomenon does

however modify the definition of p11 (detection proba-

bility for occupied sites) to be equal to the ‘‘net’’

probability of detection. That is, suppose pa is the

probability of correctly detecting a species at an

occupied site and pb is the probability of incorrectly

detecting a species (at either an occupied site or an

unoccupied site), and suppose that the two types of

detection events are independent, then the likelihood for

the data is precisely equivalent to that given by Eq. (1),

but with p11 ¼ pa þ pb � papb and p00 ¼ pb. Both

parameters pa and pb can be estimated, but this is not

necessary when interest is focused on w.
The model that arises in the presence of false positive

errors is closely related to conventional models of

heterogeneous detection in animal surveys (commonly

referred to collectively as model Mh). Mathematically,

the misclassification model is identical to the finite

mixture of Norris and Pollock (1996) used to estimate

the size of a closed population. The difference is that,

here, N (the number of sample sites) is known. Similar

models have been proposed for site occupancy models

with heterogeneity (Royle 2005), and their form is

slightly different. In the present case, the data are

binomial counts with occupied sites having one value of

p and unoccupied sites having another. In the presence

of false positive errors, under a finite mixture model of

order k for p, the resulting likelihood is precisely a finite

mixture of order k þ 1. For example, if p for occupied

sites is a finite mixture with two components, and false

positives are possible, the resulting likelihood is a

mixture of three binomial distributions. On the other

hand, in the absence of false positives, when variation in

p is described by a finite mixture of order k, the resulting

likelihood is a zero-inflated finite mixture of order k (see

Royle 2005). Of course, alternative models for hetero-

geneity are possible (e.g., Coull and Agresti 1999,

Dorazio and Royle 2003). In light of recent work by

Link (2003) (see also Pledger [2005] and Dorazio and

Royle [2005]), we suggest tempering enthusiasm for

building intricate models of detection probability and

over-reliance on conventional model-selection proce-

dures as a basis for inference in such problems.

In general, site occupancy models, including the

generalization that we have proposed, inherit certain

mathematical properties from their common represen-

tation as binomial mixture models. This has the

important consequence that there can be multiple in-

terpretations of certain models. To bring this issue into

context, we take the general class of models indexed by

three parameters, site occupancy (w), detection proba-

bility (p11) and the false positive error rate (p10). It is

convenient to reference specific models from within this

general class using the short-hand notation (w, p11, p10).
In this context, the null model, i.e., that of MacKenzie et

al. (2002), is the reduced model (w, p11, p10¼ 0). We note
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that (w, p11, p10¼ 0) is equivalent in terms of likelihood

to the model (1 � w, p11 ¼ 0, p10), merely due to the

symmetry in the likelihood that results from the

binomial mixture structure. These competing interpre-

tations are avoided in MacKenzie et al. (2002) and

applications of that model, by ruling out the case p10 . 0

a priori. We have noted that this is not a necessary

constraint, as the condition p11 . p10 yields an

unambiguous interpretation of the more general model,

and the constrained model is falsifiable under the more

general model. Competing interpretations also arise

under our generalization of site occupancy models. For

example, suppose we have an ordinary site occupancy

model with heterogeneous detection probabilities de-

scribed by a finite mixture of order k. This model is a

zero-inflated binomial mixture (see Royle 2006), with

occupancy parameter w, a false positive error rate of

identically zero, and several parameters that describe the

binomial mixture. Denote this model by (w, p11 ;

FM(k), p10¼0). The model generalized to allow for false

positives is (w, p11 ; FM(k), p10). The more general

model is precisely equivalent to the model (w¼ 1, p11 ;

FM(kþ 1), p10¼ 0) in the sense that any data will yield

exactly the same likelihood.

How might we resolve the existence of ambiguous

interpretations of such models? We could adopt the

conventional approach of ruling out pathological

boundary cases such as w ¼ 1 in order to yield an

unambiguous interpretation of the model. We might

also choose to admit the ambiguity in our assessment, as

there is no formal, objective, basis for neglecting the case

w ¼ 1 or the case p10 ¼ 0 in the conventional site

occupancy model. Our view is that one has to consider

the viability of competing interpretations in light of

understanding of the sampling problem at hand. For

example, Ovenbirds have a distinctive call, and it is hard

to imagine that a well-trained observer produces false

positive detection. Thus, one interpretation of the results

given in Table 2 is that w ’ 1 and that p11 is

heterogeneous and approximated by a two-point finite-

mixture distribution. In the present case, false positive

errors and heterogeneous detection probabilities (pa-

rameterized by a finite mixture) cannot be considered as

competing data generating mechanisms because one

cannot distinguish between them from data. That is, no

statistical analysis can yield information in support of

one of the mechanisms over the other and so the model

must be described a priori. The finite mixture as used in

this paper has a direct mechanistic interpretation—it is

not one of many possible candidate models of mis-

classification, but rather it is the model that results from

the introduction of random false positive errors into the

zero-inflated binomial sampling model underlying the

MacKenzie et al. (2002) model. Conversely, in the

classical heterogeneity models (e.g., Norris and Pollock

1996) the finite mixture is but one of many models of

heterogeneous detection probabilities, and its applica-

tion is typically as a curve-fitting tool employed to

improve model fit. We thus believe that its use to

describe heterogeneous detection probabilities in site

occupancy models should be avoided. We note that

continuous heterogeneity models are identifiable in the

presence of misclassification, the resulting likelihood

being a mixture of the continuous density and a point

mass at some nonzero value, i.e., p10.
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SUPPLEMENT

Data and R code for analyses summarized in Table 1 (Ecological Archives E087-049-S1).
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